IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Firat University Journal of Experimental and Computational Engineering
  • Volume:3 Issue:1
  • Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Sa...

Investigation of The Effect of Phase Angle on The Aerodynamic Performance of Three-Bladed Helical Savonius Wind Turbines Using Computational Fluid Dynamics Method

Authors : Mernuş Gül, Muhammed Safa Kamer, Erdem Alıç
Pages : 52-64
Doi:10.62520/fujece.1414345
View : 114 | Download : 134
Publication Date : 2024-02-29
Article Type : Research Paper
Abstract :In this study, the effect of the phase angle of the semicircular blades between the stages on the aerodynamic performance of the three-blade, double-stage helical Savonius wind turbines (HSWT), which are vertical axis wind turbines, was examined by the computational fluid dynamics (CFD) method. In the Savonius wind turbine system, the drag force effect provides the most significant contribution to aerodynamic performance. Performance improvements that can affect drag force can provide significant advantages. For this purpose, three-bladed double-stage helical Savonius rotors with eccentricity L/H=1/2 and phase angles of the semicircular blades between the stages Ɵ=0°, 45° and 90° were designed. Solidworks R2018 is used for designs and ANSYS-Fluent 18.1 programs are used for analysis. The turbine with L/H=1/2 and Ɵ=90° was produced on a 3D printer and tested experimentally. Experiments were carried out in the T-490 air tunnel. The results obtained were used as a reference for numerical analysis and the ideal turbine model was tried to be determined. 10 different air velocities ranging between 3.83-20.35 m/s were used in the numerical analysis. As a result, an 11.64% increase in the drag force was observed by changing the phase angle from 0° to 45° in HSWT 1/2s. By changing the phase angle from 0° to 45° in HSWT 1/2s, a 10.77% rise in the drag coefficient was observed. It has been evaluated that the HSWT efficiency improved with the increment in drag force.
Keywords : Aerodinamik özellikler, Faz açısı, Rüzgâr türbini, Hesaplamalı akışkanlar dinamiği, Sürüklenme kuvveti

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025