IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi University Journal of Science
  • Volume:33 Issue:1
  • Investigation of Hydrogen Production from Bio-Oil Substances Using Aspen Plus

Investigation of Hydrogen Production from Bio-Oil Substances Using Aspen Plus

Authors : Mesut BEKİROĞULLARI, Mustafa KAYA
Pages : 14-20
Doi:10.35378/gujs.550735
View : 13 | Download : 5
Publication Date : 2020-03-01
Article Type : Research Paper
Abstract :In this study, a base-case process diagram was established and simulated in Aspen Plus to explore effect of temperature on hydrogen production. The evaluated compounds were acetic acid, ethylene glycol, acetone, ethyl acetate and m-xylene, which are representative of the main bio-oil derived components. UNIQUAC was used as property model to simulate the process in Aspen Plus. Bio-oil components conversions, mass and molar fractions, and the molar flow rates of hydrogen were studied over a range of temperature starting from 30 °C to 1100 °C. The results obtained from the simulation suggest that all of the five components reach approximately 100% conversion with acetic acid to be the first to reach 100% conversion. The reactor temperature for 100% conversion of the components increases in the following orders: acetic acid > ethylene glycol > ethyl acetate > acetone > m-xylene. It was found that at high temperatures m-xylene was able to produce highest mass fraction of hydrogen and the order was the following: m-xylene> ethyl acetate > acetone > ethylene glycol > acetic acid. Such simulation approaches can be exploited for robust design and optimization of hydrogen production reducing operating cost and taking this process one step closer to industrialization.
Keywords : Aspen Plus, Bio Oil Compounds, Hydrogen Energy, Steam Reforming, Reactor Temperature

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025