IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi University Journal of Science
  • Volume:34 Issue:4
  • A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks

A Terahertz Metamaterial Absorber-Based Temperature Sensor Having Nine Resonance Peaks

Authors : Fulya BAĞCI
Pages : 1163-1177
Doi:10.35378/gujs.769726
View : 15 | Download : 11
Publication Date : 2021-12-01
Article Type : Research Paper
Abstract :Design and investigation of a polarization-insensitive nine-band tunable metamaterial absorber at THz frequencies with equal to or more than 90% absorption ratio in all of the bands are reported. The tunable metamaterial absorber consists of four isosceles triangle patches with four U-shaped cut paths on top of an indium antimonide substrate, which has a fully metallic ground plane at the backside. Numerical analyses show that the metamaterial absorber has wide-angle characteristics under transverse-electric and transverse-magnetic modes. The permittivity of indium antimonide is highly dependent on temperature variations due to its temperature-dependent intrinsic carrier density, leading to shift of nine absorption peak frequencies upon change of environment temperature. Broadband switching of nine absorption peak frequencies with maximum 71.5% shift ratio between 190 K and 230 K is obtained. Temperature sensing performance of the metamaterial absorber is further evaluated and the sensitivities are found to be 11.5 GHz/K, 9.2 GHz/K, 8.3 GHz/K, 7.6 GHz/K, 7.0 GHz/K, 6.2 GHz/K, 5.3 GHz/K, 4.5 GHz/K and 4.2 GHz/K, from the first to ninth absorption band, respectively. Therefore, the proposed nine-band metamaterial absorber sensor has great potential in sensitive and accurate temperature measurement, absorption tuning in optoelectronic applications and as frequency selective thermal emitters.
Keywords : Tunable metamaterial, Polarization insensitive, Absorption ratio, Terahertz frequency, Temperature sensing

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025