IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi University Journal of Science
  • Volume:37 Issue:1
  • The Effects of Rod and Round-Like Nanohydroxyapatites on Allium cepa Root Meristem Cells

The Effects of Rod and Round-Like Nanohydroxyapatites on Allium cepa Root Meristem Cells

Authors : Merve Güneş, Burcin Yalcin, Ayşen Yağmur Kurşun, Ghada Tagorti, Emre Yavuz, Esin Akarsu, Nuray Kaya, Bülent Kaya
Pages : 16-28
Doi:10.35378/gujs.1218829
View : 130 | Download : 222
Publication Date : 2024-03-01
Article Type : Research Paper
Abstract :Biomaterials are engineered products that are widely used in many areas of medicine fields such as orthopaedic applications, facial and maxillofacial surgery, artificial heart parts, metal parts, and implantable devices. These materials are widely used in medicine because they are biocompatible with the organism, non-allergic, and are resistant to physical and chemical factors. Hydroxyapatites are bioactive calcium phosphate ceramics that are compatible with tissues. Nano-sized hydroxyapatite has been produced to increase their bioactivity. Although there are advantages to the use of nanoparticles in medicine and therapy, the potential toxicity of these compounds on the ecosystem and human health are of concern. One of the key issues to be investigated is whether the different forms of the same nanoparticle will cause differences in genotoxicity. Herein, the potential genotoxic effects of rod and round forms of nano-sized hydroxyapatites (nHAs) were evaluated using the Allium cepa Single Cell Gel Electrophoresis (SCGE) method. Results had shown that the round form of nHA in the A. cepa meristem root tip cells caused statistically significant genotoxicity at 25 µg/mL concentration in terms of tail intensity and tail moment. This study indicated small-sized-nanohydroxyapatite-induced genotoxicity and cell death in A. cepa. This study has shown that the physical properties of nanoparticles affect potential toxicity mechanisms.
Keywords : Allium cepa, DNA damage, Genotoxicity, Root growth

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025