IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi University Journal of Science
  • Volume:37 Issue:2
  • Shallow Convolutional Neural Network for Gender Classification Based on Hand

Shallow Convolutional Neural Network for Gender Classification Based on Hand

Authors : Md Khaliluzzaman
Pages : 654-675
Doi:10.35378/gujs.1246486
View : 136 | Download : 204
Publication Date : 2024-06-01
Article Type : Research Paper
Abstract :Gender classification based on the hand image is used in computer vision for human-computer communication, hand-based authentication, and identification systems. Beside this, gender classification may be applied for criminal investigations, visual surveillance, and other legal purposes. The traditional manual methods require a lot of time and are susceptible to variable fluctuations. However, for low amounts of data, the deep-learning models are going to be overfitted. In this regard, this work proposes a shallow convolutional neural network (CNN) with a regularization method. Here, different gender classification models are built to detect the gender individually from dorsal and palmar hand images. For that, the 11K hand dataset is divided into four labels, i.e., men dorsal side, women dorsal side, men palm side, and women palm side. These data have been pre-processed by resizing and scaling. Furthermore, a model is developed for classifying gender from the real time data. According to the experimental results, the model developed for the dorsal hand images outperforms the other proposed models and the current state-of-the-art.
Keywords : Gender recognition, Regularization, Dorsal, Palm, 11K hand dataset

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025