IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Hacettepe Journal of Mathematics and Statistics
  • Volume:51 Issue:5
  • A new improved Liu-type estimator for Poisson regression models

A new improved Liu-type estimator for Poisson regression models

Authors : Kadri Ulaş AKAY, Esra ERTAN
Pages : 1484-1503
Doi:10.15672/hujms.1012056
View : 23 | Download : 8
Publication Date : 2022-10-01
Article Type : Research Paper
Abstract :The Poisson Regression Model insert ignore into journalissuearticles values(PRM); is commonly used in applied sciences such as economics and the social sciences when analyzing the count data. The maximum likelihood method is the well-known estimation technique to estimate the parameters in PRM. However, when the explanatory variables are highly intercorrelated, unstable parameter estimates can be obtained. Therefore, biased estimators are widely used to alleviate the undesirable effects of these problems. In this study, a new improved Liu-type estimator is proposed as an alternative to the other proposed biased estimators. The superiority of the new proposed estimator over the existing biased estimators is given under the asymptotic matrix mean square error criterion. Furthermore, Monte Carlo simulation studies are executed to compare the performances of the proposed biased estimators. Finally, the obtained results are illustrated in real data. Based on the set of experimental conditions which are investigated, the proposed biased estimator outperforms the other biased estimators.
Keywords : Poisson regression, mean squared error, multicollinearity, Ridge estimator, Liu estimator

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025