IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Hittite Journal of Science and Engineering
  • Volume:9 Issue:2
  • Single Fe2B Phase Particle Production by Calciothermic Reduction in Molten Salt

Single Fe2B Phase Particle Production by Calciothermic Reduction in Molten Salt

Authors : Levent KARTAL
Pages : 145-150
Doi:10.17350/HJSE19030000265
View : 19 | Download : 7
Publication Date : 2022-06-30
Article Type : Research Paper
Abstract :In this study, calciothermic single phase iron borideinsert ignore into journalissuearticles values(Fe2B); production was investigated in a scalable molten salt system, starting from inexpensive, easily accessible oxide materials. First, the formation of Fe2B was examined in detail in the light of thermodynamic data and literature. After, effects of CaO amount insert ignore into journalissuearticles values(0-10 wt.%); and time insert ignore into journalissuearticles values(30-60 min); on particle synthesis were investigated under at constant 3.0 V cell voltage and 1273 K temperature. It was determined that the average current increased continuously with the increase in the amount of CaO, and the current efficiency increased up to 7% by weight of CaO. After the CaO ratio was determined, the effect of the electrolysis duration was examined. In durations experiments, it has been observed that, in 30 minutes’ duration, the particles are composed of Fe, Fe2B and FeB, and by increasing the experiment time to 60 min, single-phase Fe2B particles are obtained. The magnetic properties of the single-phase Fe2B particles obtained at the end of the experiment period of 60 minutes were investigated by VSM. The saturation magnetization, permanent magnetization and coercivity values of the Fe2B particles were determined as 90.718 emu/g, 33.311 Oe, 1.684 emu/g, respectively.
Keywords : molten salt electrolysis, iron boride, calciothermic reduction, borides

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025