IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Hittite Journal of Science and Engineering
  • Volume:9 Issue:2
  • Development and Evaluation of Ensemble Learning Models for Detection of DDOS Attacks in IoT

Development and Evaluation of Ensemble Learning Models for Detection of DDOS Attacks in IoT

Authors : Yıldıran YILMAZ, Selim BUYRUKOĞLU
Pages : 73-82
Doi:10.17350/HJSE19030000257
View : 22 | Download : 9
Publication Date : 2022-06-30
Article Type : Research Paper
Abstract :Internet of Things that process tremendous confidential data have difficulty performing traditional security algorithms, thus their security is at risk. The security tasks to be added to these devices should be able to operate without disturbing the smooth operation of the system so that the availability of the system will not be impaired. While various attack detection systems can detect attacks with high accuracy rates, it is often impos-sible to integrate them into Internet of Things devices. Therefore, in this work, the new Distributed Denial-of-Service insert ignore into journalissuearticles values(DDoS); detection models using feature selection and learn-ing algorithms jointly are proposed to detect DDoS attacks, which are the most common type encountered by Internet of Things networks. Additionally, this study evaluates the memory consumption of single-based, bagging, and boosting algorithms on the client-side which has scarce resources. Not only the evaluation of memory consumption but also development of ensemble learning models refer to the novel part of this study. The data set consisting of 79 features in total created for the detection of DDoS attacks was minimized by selecting the two most significant features. Evaluation results confirm that the DDoS attack can be detected with high accuracy and less memory usage by the base models com-pared to complex learning methods such as bagging and boosting models. As a result, the findings demonstrate the feasibility of the base models, for the Internet of Things DDoS detection task, due to their application performance.
Keywords : Attack Detection, Bagging, Base, Boosting, DDOS

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025