IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • International Journal of 3D Printing Technologies and Digital Industry
  • Volume:6 Issue:3
  • NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYET...

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF DELAMINATION DEFECT AT MATERIALS OF POLYETHYLENE TEREPHTHALATE (PET)PRODUCED BY ADDITIVE MANUFACTURING ON FLEXURAL RESISTANCE

Authors : Alperen DOĞRU, Ayberk SÖZEN, Gökdeniz NEŞER, Mehmet Özgür SEYDİBEYOĞLU
Pages : 382-391
Doi:10.46519/ij3dptdi.1098903
View : 32 | Download : 16
Publication Date : 2022-12-31
Article Type : Research Paper
Abstract :Polyethylene terephthalate insert ignore into journalissuearticles values(PET); material, which is widely used in the packaging industry due to its thermal and mechanical properties, high chemical resistance, and low gas permeability, is among the most widely used polymer materials in the world. These properties have made their use in additive manufacturing methods widespread. Determining how some common additive manufacturing defects affect the products produced by these methods will increase the adoption of these technologies in the final product production. In this study, the investigation of the effect of layer non-joining defect called delamination on the impact strength of PET material produced by additive manufacturing method at different layer thicknesses was carried out experimentally and numerically. The effects to flexural stress on the artificially created layer adhesion defect on the middle layers of the parts produced and modeled with a layer thickness of 0.1/0.2/0.3mm were investigated. It has been observed that the increase in layer thickness decreases flexural strength. In addition, while the flexural strength of the specimens containing delamination decreased, the increase in layer thickness accelerated this decrease.
Keywords : PET, Flexural Resistance, Delamination, FFF

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025