IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • International Journal of Automotive Engineering and Technologies
  • Volume:7 Issue:1
  • Numerical analysis of elastomer buffer embedded in the suspension of automobile for vibration dampin...

Numerical analysis of elastomer buffer embedded in the suspension of automobile for vibration damping improvement

Authors : Ahmad PARTOVİ MERAN
Pages : 65-75
Doi:10.18245/ijaet.438049
View : 13 | Download : 6
Publication Date : 2018-04-03
Article Type : Other Papers
Abstract :Elastomers, due to their excellent damping and energy absorption characteristics and low cost are used extensively in automobile industry to isolate the structures from vibration and shock loads. In this study, it was aimed to analyze the damping performance of an elastomer buffer embedded in the suspension of an automobile. To reach to this aim, vibration simulation of an automobile suspension model was conducted by using a nonlinear explicit finite element code, Abaqus. In order to simulate the damping behavior of elastomer buffer, the hyperelastic and linear viscoelastic material models were used together. The numerical model was validated with results of exact solution method in terms of transmissibility ratio and phase shift in a wide range of input excitation frequencies. Good agreement was observed between the exact solution and finite element results, which indicate that finite element model is sufficiently accurate. To examine the damping performance of the buffer, the displacement time history curves were extracted for suspension with and without buffer under the sinusoidal base excitation. The vibrating motions of suspension for both conditions were compared. The comparison results proved that the elastomer buffer was effective in improvement of damping performance of suspension. It reduced the amplitude of vibration and oscillation time of sprung mass remarkable in excitation frequencies around and over the natural frequency of the system.
Keywords : Elastomer, Viscoelasticity, Suspension, Buffer, viscoelastic damping

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025