IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • International Journal of Automotive Engineering and Technologies
  • Volume:4 Issue:2
  • MFFNN and GRNN Models for Prediction of Energy Equivalent Speed Values of Involvements in Traffic Ac...

MFFNN and GRNN Models for Prediction of Energy Equivalent Speed Values of Involvements in Traffic Accidents / Trafik Kazalarında tutulumunun Enerji Eşdeğer Hız Değerleri Tahmininde MFFNN ve GRNN Modelleri

Authors : Ali YILMAZ, Cigdem ACİ, Kadir AYDİN
Pages : 102-109
Doi:10.18245/ijaet.78159
View : 13 | Download : 6
Publication Date : 2015-01-11
Article Type : Other Papers
Abstract :Accident reconstruction is a scientific study field that depends on analysis, research and drawing. Scientific reconstruction of related traffic accident on computer eliminates making decisions depending on initiative or experience of the expert and yields impartial decisions and evidences especially on events like matter for the courts or forensic investigations. In this study, data collected from accident scene insert ignore into journalissuearticles values(police reports, skid marks, deformation situation of involvements, crush depth etc.); were inserted properly into the software called “vCrash” which is able to simulate the accident scene in 2D and 3D. Then, 784 parameters, related to calculating Energy Equivalent Speed insert ignore into journalissuearticles values(EES); with a prediction error, were prepared according to several accidents. These parameters were also used as teaching data for the Multi-layer Feed Forward Neural Network insert ignore into journalissuearticles values(MFFNN); and Generalized Regression Neural Network insert ignore into journalissuearticles values(GRNN); models in order to predict EES values of involvements, which give idea about severity and dissipation of deformation energy corresponding to the observed vehicle residual crush, without requirement of performing simulation for probable accidents in future. Using 10-fold cross validation on the dataset, standard error of estimates insert ignore into journalissuearticles values(SEE); and multiple correlation coefficients insert ignore into journalissuearticles values(R);of both models are calculated. The GRNN-based model yields lower SEE whereas the MFFNN-based model yields higher R. Özet: Kaza yeniden analiz, araştırma ve çizim bağlıdır bilimsel bir çalışma alanıdır. Bilgisayardaki ilgili trafik kazası Bilimsel yeniden inisiyatifi veya bilirkişinin deneyimine bağlı olarak kararlar ortadan kaldırır ve özellikle mahkemeler veya adli soruşturma için madde gibi olaylara tarafsız kararlar ve delilleri verir. Bu çalışmada, veriler kaza sahnesi insert ignore into journalissuearticles values(polis raporlarında, kızak işaretleri, tutulumunun deformasyon durumuna vs. ezilme derinliği); 2D ve 3D kaza sahnesini taklit edebilen `vCrash` olarak adlandırılan yazılım içine düzgün bir şekilde yerleştirildi toplanan. Daha sonra, tahmin hatası Enerji eşdeğer Speed ​​insert ignore into journalissuearticles values(EES); hesaplanması ile ilgili 784 parametreleri, çeşitli kazalar göre hazırlandı. Bu parametreler İleri Sinir Ağı insert ignore into journalissuearticles values(MFFNN); ve Genelleştirilmiş Regresyon Sinir Ağı insert ignore into journalissuearticles values(GRYSA); yapılan ÇO şiddeti ve karşılık gelen deformasyon enerjisinin dağılımı konusunda fikir vermek bulguların EES değerlerini tahmin etmek için modeller Yem Çok katmanlı öğretim veri olarak kullanıldı Gelecekte muhtemel kazalara karşı simülasyon gerçekleştirme gereksinimi olmadan gözlenen araç artık ezmek. Veri kümesi üzerinde 10 kat çapraz doğrulama kullanarak, tahminler insert ignore into journalissuearticles values(GDA); ve her iki model çoklu korelasyon katsayılarının insert ignore into journalissuearticles values(R); standart hatası hesaplanır. MFFNN-tabanlı model yüksek R. verir, oysa GRNN-tabanlı model alt SEE verir.
Keywords : Accident reconstruction, EES, artificial neural network, MFFNN, GRNN Kaza rekonstrüksiyonu, EES, yapay sinir ağları, MFFNN, GRNN

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025