IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • International Journal of Automotive Science and Technology
  • Volume:1 Issue:2
  • REDUCED WEIGHT AUTOMOTIVE BRAKE PEDAL TEST & ANALYSIS

REDUCED WEIGHT AUTOMOTIVE BRAKE PEDAL TEST & ANALYSIS

Authors : Ali Fuat Ergenc, Alp Tekin Ergenc, Sefa Kale, Ilknur G Sahin, Kerem Dagdelen, Volkan Pestelli, Orcun Yontem, Bahadir Kuday
Pages : 8-13
View : 11 | Download : 5
Publication Date : 2017-08-30
Article Type : Research Paper
Abstract :Currently, automotive industry continues to strive for light weight vehicle for improving fuel efficiency and emission reduction. It is crucial to design vehicles with an optimum weight for a better performance of the car. In this field, which has boundaries with fixed standards and regulations, manufacturers continue to work on characteristics, structures and types of the material to develop   new components, which have same safety specifications but cheaper and lighter than current products. In this study, the strength analysis of a new design of an automotive brake pedal is presented. In order to reduce the weight, an alternative design, plasma welded two parts   is studied instead of a monoblock gas arc welded brake pedal arm. The estimation of the design life of both current and the new pedal, a linear static stress analysis was performed via finite element method. Here, critical regions where the stress concentration occurs were determined. Stress-life method was used to estimate the fatigue life of the brake pedal. Based on the analysis results, design enhancement solutions were applied to extend the life of the new brake pedal. The computational analysis of the fatigue life of the pedal is validated utilizing a custom made test setup.
Keywords : Brake pedal, strength analysis, fatigue life, finite element analysis

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025