IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • International Journal of Advances in Engineering and Pure Sciences
  • Volume:35 Issue:2
  • Evaluation of Potential Environmental Risks of Graphene-Based Materials by Examining the Effect of r...

Evaluation of Potential Environmental Risks of Graphene-Based Materials by Examining the Effect of rGO on the Microbial Activity of P. Chrysosporium.

Authors : Özgecan MADENLİ, Ece Ümmü DEVECİ
Pages : 177-182
Doi:10.7240/jeps.1174562
View : 32 | Download : 31
Publication Date : 2023-07-03
Article Type : Research Paper
Abstract :Graphene has been used in various applications in many fields. In recent years, its annual output has reached one hundred tons. Graphene has shown great potential in analytics, medicine, electronics, energy, agriculture, and environmental remediation. With increasing applications and production, the environmental risks and hazards of graphene have increased public concern. It was a key issue in environmental risk assessments of graphene materials. Microbial degradation of graphene and graphene oxide and its degradation by fungi in the environment have been previously studied. However, reduced graphene oxide insert ignore into journalissuearticles values(rGO); was difficult to degrade by fungi, and there were limited studies on this subject. In this study, the white rot fungus Phanerochaete chrysosporium was incubated with the culture system rGO for one week. The independent variables of microorganism concentration, pH, and rGO concentration were analyzed with the Box Behnken statistical method using response surface methodology. The potential environmental risks of graphene-based materials were assessed by examining the effect of rGO on the microbial activity of P. chrysosporium. The results revealed that rGO inhibited microbial activity during incubation and acted as an inhibitor in the medium. In addition, pH was found to be effective in inhibiting the environment, while microbial activity decreased at low pH. Moreover, P.chrysosporium was thought to degrade the oxygen groups on the rGO surface due to its decomposition ability. To test the environmental impact of graphene-based materials in general, it was aimed at unraveling the structure-activity relationships of the fungus P. chrysosporium.
Keywords : İndirgenmiş grafen oksit, Beyaz çürükçül mantar, Box Behnken, Çevresel Etki Değerlendirme

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025