IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Journal of Advanced Research in Natural and Applied Sciences
  • Volume:6 Issue:1
  • Eksik Hidrolojik Verilerin Simbiyotik Organizmalar Arama Algoritması ile Tahmini

Eksik Hidrolojik Verilerin Simbiyotik Organizmalar Arama Algoritması ile Tahmini

Authors : Kemal SAPLIOĞLU, Tülay Suğra KÜÇÜKERDEM ÖZTÜRK, Fatih Ahmet ŞENEL
Pages : 93-104
Doi:10.28979/comufbed.628846
View : 22 | Download : 14
Publication Date : 2020-05-22
Article Type : Research Paper
Abstract :Su kaynakları proje ve planlamalarının en etkili şekilde yapılabilmesi için düzenli olarak verilerin toplan-ması ve bu verilerin analiz edilmesi gerekmektedir. Ancak gerek maddi gerekse teknik nedenlerden dolayı bazı alanlarda veriler düzenli olarak toplanamamaktadır. Bu durum ise eksik veri problemini beraberinde getirmektedir. Eksik veri problemi su kaynaklarının planlanmasında, projelendirilmesinde ve yönetiminde birtakım sorunlar meydana getirmektedir. Bu problemin çözümü için ölçüm yapılan istasyona benzer nitelikteki diğer istasyon verilerine ihtiyaç duyulmaktadır. Eksik verilerin tamamlanması için literatürde çok farklı çalışmalar yapılmıştır. Bu çalışmada ise Türkiye’nin Yeşilırmak nehri üzerinde bulunan ölçüm istasyonları kullanılmıştır. Çalışmada Symbiotic Organisms Search insert ignore into journalissuearticles values(SOS); algoritması yardımı ile 3 farklı fonksiyon optimize edilmiştir. Ayrıca optimize edilen fonksiyonlar yapay sinir ağları, normal oran metodu ve çoklu regresyon yöntemlerinden elde edilen sonuçlar ile karşılaştırılmıştır. Oluşturulan modellerden elde edilen sonuçlar Mallows’s Cp ile test edilmiş ve sonuçların kabul edilebilir düzeyde olduğu görülmüş-tür. Yapay sinir ağları ile oluşturulan 6 adet modelin sonuçları ise normal oran metodu ve çoklu regresyo-na göre daha iyi sonuç vermesine rağmen Symbiotic Organisms Search optimizasyon yöntemi kadar başa-rılı olamamıştır. Yapay sinir ağları modellerinden en iyisi de bu çalışma için 8 nöronlu olarak tespit edil-miştir. Çalışmada SOS olmadan oluşturulan modellerin hata değerlerinin %3-%4 seviyelerinde olduğu, SOS ile optimize edilen fonksiyon sonuçlarının diğer yöntemlere göre daha iyi olduğu görülmüştür. 
Keywords : Eksik veriler, simbiyotik organizmalar arama algoritması, Yeşilırmak nehri, tahminleme

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025