IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Journal of Economy Culture and Society
  • Issue:69
  • Artificial Intelligence Bias and the Amplification of Inequalities in the Labor Market

Artificial Intelligence Bias and the Amplification of Inequalities in the Labor Market

Authors : Mahmut Özer, Matjaz Perc, H Eren Suna
Pages : 159-168
Doi:10.26650/JECS2023-1415085
View : 74 | Download : 52
Publication Date : 2024-06-13
Article Type : Review Paper
Abstract :Artificial intelligence (AI) is now present in nearly every aspect of our daily lives. Furthermore, while this AI augmentation is generally beneficial, or at worst, nonproblematic, some instances warrant attention. In this study, we argue that AI bias resulting from training data sets in the labor market can significantly amplify minor inequalities, which later in life manifest as permanently lost opportunities and social status and wealth segregation. The Matthew effect is responsible for this phenomenon, except that the focus is not on the rich getting richer, but on the poor becoming even poorer. We demonstrate how frequently changing expectations for skills, competencies, and knowledge lead to AI failing to make impartial hiring decisions. Specifically, the bias in the training data sets used by AI affects the results, causing the disadvantaged to be overlooked while the privileged are frequently chosen. This simple AI bias contributes to growing social inequalities by reinforcing the Matthew effect, and it does so at much faster rates than previously. We assess these threats by studying data from various labor fields, including justice, security, healthcare, human resource management, and education.
Keywords : artificial intelligence, bias, Matthew effect, social inequality, misinformation

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025