IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Journal of Energy Systems
  • Volume:6 Issue:2
  • Performance assessment of photovoltaic/thermal (PVT) hybrid adsorption-vapor compression refrigerati...

Performance assessment of photovoltaic/thermal (PVT) hybrid adsorption-vapor compression refrigeration system

Authors : Mohamed GADO, Shinichi OOKAWARA, Sameh NADA, Hamdy HASSAN
Pages : 209-220
Doi:10.30521/jes.1002871
View : 10 | Download : 6
Publication Date : 2022-06-30
Article Type : Research Paper
Abstract :Hybrid vapor compression systems based on adsorption are recognized as a viable alternative to traditional energy-intensive compression systems. Solar-powered hybrid adsorption-compression refrigeration systems feature a solar-powered silica gel/water-based adsorption cooling system paired with a traditional compression system that utilizes R134a as a refrigerant. Herein, the system feasibility of a solar-operated hybrid adsorption-compression refrigeration system has been evaluated theoretically using typical climatic data of Alexandria, Egypt. Mathematical modeling is generated and compared to the most relevant experimental data. PVT collectors are exploited to drive both the adsorption and the compression units. Simulation results suggest that using a three-to-one system size ratio between the adsorption and compression subsystems might considerably raise the COP from 2.9 to 5 for the compression system. It is observed that at an ideal size ratio of 7, the proposed system can considerably deliver an energy saving of 30.8 percent, compared to the hybrid system of the size ratio of 3, which attains only energy savings of 22.1 percent. Furthermore, the utilization of PVT collectors might feed the hybrid system by 3.474 kWh and augment the electric grid by 100 kWh, at an ideal size ratio of 7. Overall, investigating hybrid adsorption-compression systems might offer unique insight on optimizing the performance of conventional counterparts.
Keywords : Adsorption system, Compression system, Hybrid system, PVT

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025