IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Journal of Energy Systems
  • Volume:6 Issue:2
  • Numerical investigation of energy desorption from magnesium nickel hydride based thermal energy stor...

Numerical investigation of energy desorption from magnesium nickel hydride based thermal energy storage system

Authors : Sumeet Kumar DUBEY, K Ravi KUMAR
Pages : 165-175
Doi:10.30521/jes.952627
View : 17 | Download : 7
Publication Date : 2022-06-30
Article Type : Research Paper
Abstract :The use of dual metal hydride system for thermal energy storage consists of high and low-temperature metal hydrides. In this study, a 3D cylindrical Magnesium Nickel hydride bed is analyzed for thermal energy discharge. The energy discharge from metal hydride bed initially at temperature of 400 K, a heat transfer fluid at 500 K temperature is supplied to extract the heat generated due to exothermic chemical reaction. In this article, variation of the number of heat transfer fluid tubes and effect of variation of aspect ratio insert ignore into journalissuearticles values(ratio of diameter to height); on energy desorption and heat transfer from metal hydride bed is performed. The optimal number of heat transfer fluid tubes is determined for various aspect ratios. The temperature variation of the metal hydride bed with an increase in the number of heat transfer fluid tubes is analyzed. The study of aspect ratio variation on energy desorption and heat transfer characteristics is analyzed for three aspect ratios 0.5, 1, and 2. The variation of thermal energy desorbed, net heat transfer and temperature variation of metal hydride bed are analyzed. The adequate number of heat transfer fluid tubes for AR 0.5, 1, and 2 is identified as 32, 48, and 72, respectively. The cumulative heat released from MH bed with AR 0.5, 1, and 2 is 350.94 kJ, 330.56 kJ, and 310.42 kJ, respectively. The study will be useful in designing the optimized metal hydride bed reactor for thermal energy storage applications.
Keywords : Energy Desorption, High Temperature Metal Hydride, Magnesium Nickel Metal Hydride, Thermal Energy Storage

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025