IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Journal of Innovative Science and Engineering
  • Volume:3 Issue:1
  • ECG Biometric Identification Method based on Parallel 2-D Convolutional Neural Networks

ECG Biometric Identification Method based on Parallel 2-D Convolutional Neural Networks

Authors : Ayca HANILCI, Hakan GÜRKAN
Pages : 11-22
Doi:10.38088/jise.559236
View : 21 | Download : 12
Publication Date : 2019-06-24
Article Type : Research Paper
Abstract :In this paper, an ECG biometric identification method, based on a two-dimensional convolutional neural network, is introduced for biometric applications. The proposed model includes two-dimensional convolutional neural networks that work parallel and receive two different sets of 2-dimensional features as input. First, ACDCT features and cepstral properties are extracted from overlapping ECG signals. Then, these features are transformed from one-dimensional representation to two-dimensional representation by matrix manipulations. For feature learning purposes, these two-dimensional features are given to the inputs of the proposed model, separately. Finally, score level fusion is applied to identify the user. Our experimental results show that the proposed biometric identification method achieves an accuracy of %88.57 and an identification rate of 90.48% for 42 persons.
Keywords : Biometric identification, Electrocardiogram Signal, CNN

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025