IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Journal of Materials and Mechatronics: A
  • Volume:5 Issue:1
  • Evaluation of the turning parameters of AISI 5115 steel in dry and MQL cutting environments with the...

Evaluation of the turning parameters of AISI 5115 steel in dry and MQL cutting environments with the use of a coated carbide cutting insert: An Experimental Study

Authors : Havva Demirpolat
Pages : 168-182
Doi:10.55546/jmm.1488880
View : 58 | Download : 55
Publication Date : 2024-06-26
Article Type : Research Paper
Abstract :This study investigates the effects of cutting parameters on turning AISI 5115 steel in both dry and MQL environments using a coated carbide insert. The cutting parameters are determined using a full factorial design. A comprehensive full factorial experimental design was executed in order to investigate the effect of cutting parameters, including cutting speed, feed rate, and depth of cut, on surface roughness, cutting force and cutting temperature. Following the completion of the turning trials, surface roughness measurements were meticulously recorded. Also cutting force and cutting temperature were measured. The results of the study indicated that the most significant influence on surface roughness is exerted by the feed rate. Moreover, the impact of the depth of cut became more significant as the cutting speed decreased. While the surface roughness increased by 23% in the dry environment due to the increased feed rate at low cutting speed, the increase in the MQL environment was 32%. The cutting temperature is influenced by a number of factors, including the cutting parameters and the material properties. The maximum temperature for turning in the MQL environment was 381°C compared with an average cutting temperature of 430°C in dry machining conditions. The application of high-speed cutting in a dry cutting environment was found to result in a 10% increase in cutting temperature. The influence of cutting speed on the outcome was less pronounced in the MQL environment. At high cutting speeds and low parameter values in the MQL environment, the cutting force decreased by 75% in contrast to the low cutting speeds and high cutting parameters in the dry environment. The optimal cutting conditions for minimising cutting force were identified in the MQL environment, characterised by high cutting speeds and low feed rates.
Keywords : 5115 çelik, Tornalama, Kuru kesme, MMY, ANOVA

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025