IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Journal of New Theory
  • Issue:41
  • Kibria-Lukman Estimator for General Linear Regression Model with AR(2) Errors: A Comparative Study w...

Kibria-Lukman Estimator for General Linear Regression Model with AR(2) Errors: A Comparative Study with Monte Carlo Simulation

Authors : Tuğba SÖKÜT AÇAR
Pages : 1-17
Doi:10.53570/jnt.1139885
View : 14 | Download : 8
Publication Date : 2022-12-31
Article Type : Research Paper
Abstract :The sensitivity of the least-squares estimation in a regression model is impacted by multicollinearity and autocorrelation problems. To deal with the multicollinearity, Ridge, Liu, and Ridge-type biased estimators have been presented in the statistical literature. The recently proposed Kibria-Lukman estimator is one of the Ridge-type estimators. The literature has compared the Kibria-Lukman estimator with the others using the mean square error criterion for the linear regression model. It was achieved in a study conducted on the Kibria-Lukman estimator\`s performance under the first-order autoregressive erroneous autocorrelation. When there is an autocorrelation problem with the second-order, evaluating the performance of the Kibria-Lukman estimator according to the mean square error criterion makes this paper original. The scalar mean square error of the Kibria-Lukman estimator under the second-order autoregressive error structure was evaluated using a Monte Carlo simulation and two real examples, and compared with the Generalized Least-squares, Ridge, and Liu estimators. The findings revealed that when the variance of the model was small, the mean square error of the Kibria-Lukman estimator gave very close values with the popular biased estimators. As the model variance grew, Kibria-Lukman did not give fairly similar values with popular biased estimators as in the model with small variance. However, according to the mean square error criterion the Kibria-Lukman estimator outperformed the Generalized Least-Squares estimator in all possible cases.
Keywords : Autocorrelation, multicollinearity, second order autoregressive errors, Kibria Lukman estimator

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025