IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Journal of Smart Systems Research
  • Volume:5 Issue:2
  • Increasing the Efficiency of the Use of Patient Information Leaflets by Using Retrieval Augmented Ge...

Increasing the Efficiency of the Use of Patient Information Leaflets by Using Retrieval Augmented Generation

Authors : Serhan Ayberk Kılıç, Kasım Serbest
Pages : 121-132
Doi:10.58769/joinssr.1574195
View : 28 | Download : 78
Publication Date : 2024-12-20
Article Type : Research Paper
Abstract :This paper introduces a Retrieval-Augmented Generation (RAG) system specifically designed for enhancing the accessibility and comprehension of medical information from patient information leaflets documents. Leveraging state-of-the-art technologies such as Optical Character Recognition (OCR), vector embeddings, hybrid search mechanisms combining semantic and full-text search, and Large Language Models (LLMs) like GPT-3.5 turbo, the system efficiently processes and responds to natural language queries. By integrating these components into a cohesive architecture, the RAG system facilitates accurate retrieval of medical data and generates responses that are not only precise but also formatted to be easily understood by laypersons. The effectiveness of the RAG system was evaluated through a series of real-world case studies, which demonstrated its ability to provide reliable, contextually relevant medical advice, thereby significantly improving users\\\' access to essential health information. Insights gained from these studies indicate critical areas for future enhancement, particularly in user interaction and system feedback integration. This work underscores the potential of advanced AI tools to transform information accessibility in healthcare, making critical medical information more approachable for the public.
Keywords : Retrieval Augmented Generation (RAG), AI in Medicine, Medical Technology, Large Language Models (LLM), OpenAI, GPT-3.5 turbo

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025