IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Journal of Sustainable Construction Materials and Technologies
  • Volume:7 Issue:4
  • Fabrication of Superhydrophilic TEOS-Lactic acid Composite Films and Investigation of Biofouling Beh...

Fabrication of Superhydrophilic TEOS-Lactic acid Composite Films and Investigation of Biofouling Behaviour

Authors : Tuğçe ERVAN, Mehmet Ali KÜÇÜKER, Uğur CENGİZ
Pages : 316-321
Doi:10.47481/jscmt.1209822
View : 15 | Download : 9
Publication Date : 2022-12-30
Article Type : Research Paper
Abstract :Phytoplankton and diatom microalgae species cause biofouling by adhering to the surfaces, especially in closed cultivation systems such as tubular photobioreactors. This biofilm formation blocks the sunlight; after harvesting, it is necessary to clean the reactor. This cleaning process causes loss not only for time and finance but also in terms of environmental pollution due to using toxic chemicals and excess water usage. This study aimed to investigate the reduction of the microorganism cell adhesion on the hybrid surface. To succeed in this, the composite surface of tetraethoxysilane insert ignore into journalissuearticles values(TEOS); and lactic acid insert ignore into journalissuearticles values(LA); was prepared by the sol-gel process. Then the hybrid surfaces were coated on glass slides by the dip coating method. The wettability performance of the TEOS-LA hybrid surface was investigated using contact angle measurement and light transmittance. The wettability result showed that the superhydrophilic surface having 54 mJ/m2 of surface free energy values was obtained. An increase in the lactic acid content of the composite films increased the surface free energy insert ignore into journalissuearticles values(SFE); values decreasing the water contact angle. A pencil hardness test characterized the mechanical strength of the surfaces, and it was determined that the hardness of the composite films was decreased by increasing the LA content of the composite films. Resultantly, it is found that the TEOS-LA superhydrophilic composite film reduces the adhesion of microalgae.
Keywords : Sol gel, Composite, Microalgae, Bioadhesion, Lactic acid, Eco friendly

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025