IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Journal of Turkish Operations Management
  • Volume:8 Issue:1
  • Assessing Column Stability: A Comparative Study of Machine Learning Regression Models for Shear Stre...

Assessing Column Stability: A Comparative Study of Machine Learning Regression Models for Shear Strength Prediction

Authors : Aybike Özyüksel Çiftçioğlu
Pages : 279-289
Doi:10.56554/jtom.1401261
View : 18 | Download : 29
Publication Date : 2024-07-18
Article Type : Research Paper
Abstract :This research presents a comprehensive investigation into the accurate estimation of shear strength in rectangular reinforced concrete columns through advanced machine learning (ML) models. The study addresses the intricate challenge posed by shear strength complexity, which is crucial for evaluating column stability and ensuring structural integrity. Building upon a substantial dataset comprising 545 experimental observations sourced from diverse literature, this research establishes a robust foundation for predictive modeling. Four distinct ML regression models, Random Forest, Decision Tree, XGBoost, and LightGBM, are meticulously evaluated for their performance. The evaluation employs established metrics, including R2, RMSE, MAE, and MAPE to quantify their predictive capabilities. The outcomes highlight the models\' robustness in capturing nuanced variations in shear strength, with impressive R2 values ranging from 93.6% to 93.9%, showcasing their exceptional ability to elucidate intricate shear behaviors. Furthermore, comparative analysis indicates the slightly superior performance of the Random Forest over the Decision Tree, highlighting the efficacy of ensemble methods in this context. Extending the exploration to include XGBoost and LightGBM, the study showcases their potential as accurate shear strength predictors. The performance of the models is validated through scatter plots and error distribution plots, confirming accurate shear strength predictions across various scenarios. This research contributes significantly to the advancement of structural engineering methodologies by highlighting the potential of ML to improve the accuracy of shear strength estimation. The findings not only underscore the exceptional performance of ML models but also provide valuable insights into their comparative effectiveness, paving the way for enhanced structural assessments in columns.
Keywords : Machine Learning, Random Forest, Reinforced concrete, Regression, Shear Strength

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025