IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • MANAS Journal of Engineering
  • Volume:9 Issue:Special 1 Special Issue
  • Comparison of artificial neural network models of categorized daily electric load

Comparison of artificial neural network models of categorized daily electric load

Authors : Vildan EVREN, İlker Ali OZKAN
Pages : 24-34
Doi:10.51354/mjen.828545
View : 17 | Download : 10
Publication Date : 2021-04-30
Article Type : Research Paper
Abstract :The efficient operation of power systems and future planning, electricity load forecast is very important. Load estimation is based on predicting future electric load by examining past conditions. Short-term load prediction plays a decisive role in the load sharing of power plants. It also allows to overcome shortcomings caused by sudden load increases and power plant losses. Weather conditions are effective in short-term electrical load estimation. Daily or hourly electricity consumption data is generally used for short-term load estimation. In this study, daily electrical energy consumption of Turkey in the four years of data were used. Short-term load prediction modeling has been carried out. In this modeling, past electrical load values and temperature values were used as input, and in order to increase the prediction accuracy, the characteristics of the days were categorized weekly and classified according to the seasons. Different Artificial Neural Network models have been created according to input data, weekly categorization, and season criteria. In the study, mean absolute percentage error values were calculated. Among the models developed with ANN, the best MAPE value was 2.51% and the worst MAPE value was 4.48%. When the season criterion is added, the MAPE value is more successful.
Keywords : Artificial neural network, Short term electric load forecast, Time series modeling, Daily electric load forecast

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025