IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • MANAS Journal of Engineering
  • Volume:9 Issue:1
  • A TensorFlow implementation of Local Binary Patterns Transform

A TensorFlow implementation of Local Binary Patterns Transform

Authors : Devrim AKGÜN
Pages : 15-21
Doi:10.51354/mjen.822630
View : 18 | Download : 10
Publication Date : 2021-06-30
Article Type : Research Paper
Abstract :Feature extraction layers like Local Binary Patterns insert ignore into journalissuearticles values(LBP); transform can be very useful for improving the accuracy of machine learning and deep learning models depending on the problem type. Direct implementations of such layers in Python may result in long running times, and training a computer vision model may be delayed significantly. For this purpose, TensorFlow framework enables developing accelerated custom operations based on the existing operations which already have support for accelerated hardware such as multicore CPU and GPU. In this study, LBP transform which is used for feature extraction in various applications, was implemented based on TensorFlow operations. The evaluations were done using both standard Python operations and TensorFlow library for performance comparisons. The experiments were realized using images in various dimensions and various batch sizes. Numerical results show that algorithm based on TensorFlow operations provides good acceleration rates over Python runs. The implementation of LBP can be used for the accelerated computing for various feature extraction purposes including machine learning as well as in deep learning applications.
Keywords : tensorflow, local binary patterns, deep learning, feature extraction

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025