IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Selcuk Journal of Agriculture and Food Sciences
  • Volume:36 Issue:3
  • Classification and Analysis of Tomato Species with Convolutional Neural Networks

Classification and Analysis of Tomato Species with Convolutional Neural Networks

Authors : Yavuz Selim TAŞPINAR
Pages : 515-520
View : 21 | Download : 26
Publication Date : 2022-12-25
Article Type : Research Paper
Abstract :Tomatoes are one of the most used vegetables. There are varieties that can grow in different climates. The taste, usage area and commercial value of each are different from each other. For this reason, identifying and sorting tomato species after the production stage is a problem. In addition, since tomato is a sensitive vegetable, it is extremely important to separate it from a distance. For this purpose, the classification of tomato images belonging to 9 different tomato species was carried out in the study. In total, a dataset containing 6810 tomato images in 9 classes was used. Three different pre-trained Convolutional Neural Network insert ignore into journalissuearticles values(CNN); models were used with the transfer learning method to classify the images. AlexNet, InceptionV3 and VGG16 models were used for classification. As a result of the classifications made, the highest classification belongs to the AlexNet model with 100%. Evaluation of the performances of the models was also made with precision, recall, F1 Score and specificity performance metrics. It is foreseen that the proposed methods can be used for the separation of tomatoes.
Keywords : Classification, Computer Vision, Food Quality, Nutrients, Tomato Varieties

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025