IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Turkish Journal of Botany
  • Volume:39 Issue:6
  • Ameliorative role of ß-estradiol against lead-induced oxidative stressand genotoxic damage in germi...

Ameliorative role of ß-estradiol against lead-induced oxidative stressand genotoxic damage in germinating wheat seedlings

Authors : Mucip GENİŞEL, Hülya TÜRK, Serkan ERDAL, Yavuz DEMİR, Ebru GENÇ, İrfan TERZİ
Pages : 1051-1059
View : 23 | Download : 8
Publication Date : 0000-00-00
Article Type : Research Paper
Abstract :In the present study, to determine the effects of β-estradiol on the ability of plants to tolerate lead toxicity, β-estradiol insert ignore into journalissuearticles values(10 μM); and lead insert ignore into journalissuearticles values(1.75 mM);, singly or in combination, were exogenously applied to wheat seeds. Although lead resulted in a marked increase in the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase insert ignore into journalissuearticles values(but not catalase);, as well as an increase in the level of antioxidant compounds such as ascorbic acid and glutathione, this was insufficient to ameliorate the lead-induced oxidative injury or the superoxide anion, hydrogen peroxide, and malondialdehyde levels. However, β-estradiol was able to reduce the lead-induced oxidative damage and improved the antioxidant system. Similarly, β-estradiol reduced lead-induced α-amylase activity. The effects of lead toxicity on genetic material were also determined using the randomly amplified polymorphic DNA technique. While lead led to DNA damage in wheat seedlings, β-estradiol significantly mitigated this damage. Our element analysis results show that β-estradiol did not prevent lead uptake by roots, even it did stimulate the accumulation there. Taken together, our data demonstrate for the first time that β-estradiol-induced lead tolerance is associated with many biochemical and molecular mechanisms, including the antioxidant system, detoxification of reactive oxygen species, modulation of uptake and accumulation of lead, and protection of genetic material.
Keywords : Wheat, lead stress, oxidative stress, antioxidant enzymes, DNA mutations

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025