- Turkish Journal of Chemistry
- Volume:44 Issue:5
- Magnetite nanoparticles-based hydroxyl radical scavenging activity assay of antioxidants using N, N-...
Magnetite nanoparticles-based hydroxyl radical scavenging activity assay of antioxidants using N, N-dimethyl-p-phenylenediamine probe
Authors : Ziya CAN, Büşra KESKİN, Ayşem ARDA, Erol ERÇAĞ, Mustafa Reşat APAK
Pages : 1366-1375
View : 24 | Download : 9
Publication Date : 0000-00-00
Article Type : Research Paper
Abstract :Excessive amounts of reactive oxygen species insert ignore into journalissuearticles values(ROS);, unless counterbalanced by antioxidants, can cause cellular damage under oxidative stress conditions; therefore, antioxidative defenses against ROS must be measured. With the development of nanotechnology, nanoparticles have found numerous applications in science, health, and industries. Magnetite nanoparticles insert ignore into journalissuearticles values(Fe3O4:MNPs); have attracted attention because of their peroxidase-like activity. In this study, hydroxyl radicals insert ignore into journalissuearticles values(•OH); generated by MNPs-catalyzed degradation of H2O2 converted the N,N-dimethyl-p-phenylenediamine insert ignore into journalissuearticles values(DMPD); probe into its colored DMPD•+ radical cation, which gave an absorbance maximum at λ = 553 nm. In the presence of antioxidants, •OH was partly scavenged by antioxidants and produced less DMPD•+, causing a decrease in the 553 nm-absorbance. Antioxidant concentrations were calculated with the aid of absorbance differences between the reference and sample solutions. The linear working ranges and trolox equivalent antioxidant capacity coefficients of different classes of antioxidants were determined by applying the developed method. In addition, binary and ternary mixtures of antioxidants were tested to observe the additivity of absorbances of mixture constituents. The method was applied to real samples such as orange juice and green tea. Student t-test, F tests, and the Spearman’s rank correlation coefficient were used for statistical comparisons.Keywords : Magnetite Fe3O4, nanoparticles, reactive oxygen species ROS, N, N Dimethyl p phenylenediamine, colorimetric probe, antioxidant activity