IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Turkish Journal of Electrical Engineering and Computer Science
  • Volume:19 Issue:1
  • Co-occurrence matrix and its statistical features as a new approach for face recognition

Co-occurrence matrix and its statistical features as a new approach for face recognition

Authors : Alaa ELEYAN, Hasan DEMİREL
Pages : 97-107
View : 18 | Download : 11
Publication Date : 0000-00-00
Article Type : Research Paper
Abstract :In this paper, a new face recognition technique is introduced based on the gray-level co-occurrence matrix insert ignore into journalissuearticles values(GLCM);. GLCM represents the distributions of the intensities and the information about relative positions of neighboring pixels of an image. We proposed two methods to extract feature vectors using GLCM for face classification. The first method extracts the well-known Haralick features from the GLCM, and the second method directly uses GLCM by converting the matrix into a vector that can be used in the classification process. The results demonstrate that the second method, which uses GLCM directly, is superior to the first method that uses the feature vector containing the statistical Haralick features in both nearest neighbor and neural networks classifiers. The proposed GLCM based face recognition system not only outperforms well-known techniques such as principal component analysis and linear discriminant analysis, but also has comparable performance with local binary patterns and Gabor wavelets.
Keywords : Key words Face recognition, gray level co occurrence matrix, Haralick features

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025