- Turkish Journal of Electrical Engineering and Computer Science
- Volume:26 Issue:4
- Real-time power system dynamic security assessment based on advanced feature selection for decision ...
Real-time power system dynamic security assessment based on advanced feature selection for decision tree classifiers
Authors : Qusay ALGUBRI, Mohd Aifaa Mohd ARIFF
Pages : 2104-2116
View : 12 | Download : 8
Publication Date : 0000-00-00
Article Type : Research Paper
Abstract :This paper proposes a novel algorithm based on an advanced feature selection technique for the decision tree insert ignore into journalissuearticles values(DT); classifier to assess the dynamic security in a power system. The proposed methodology utilizes symmetrical uncertainty insert ignore into journalissuearticles values(SU); to reduce the data redundancy in a dataset for DT classifier-based dynamic security assessment insert ignore into journalissuearticles values(DSA); tools. The results show that SU reduces the dimension of the dataset used for DSA significantly. Subsequently, the approach improves the performance of the DT classifier. The effectiveness of the proposed technique is demonstrated on the modified IEEE 30-bus test system model. The results show that the DT classifier with SU outperforms the DT classifier without SU. The performance of the proposed algorithm indicates that the DT classifier with SU is able to assess the dynamic security of the system in near real time. Therefore, it is able to provide vital information for protection and control applications in power system operation.Keywords : Dynamic security assessment, data mining, decision tree, advanced feature selection, symmetrical uncertainty