IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Turkish Journal of Electrical Engineering and Computer Science
  • Volume:26 Issue:5
  • Enlarging multiword expression dataset by co-training

Enlarging multiword expression dataset by co-training

Authors : Senem Kumova METİN
Pages : 2583-2594
View : 17 | Download : 11
Publication Date : 0000-00-00
Article Type : Research Paper
Abstract :In multiword expressions insert ignore into journalissuearticles values(MWEs);, multiple words unite to build a new unit in language. When MWE identification is accepted as a binary classification task, one of the most important factors in performance is to train the classifier with enough number of labelled samples. Since manual labelling is a time-consuming task, the performances of MWE recognition studies are limited with the size of the training sets. In this study, we propose the comparison-based and common-decision co-training approaches in order to enlarge the MWE dataset. In the experiments, the performances of the proposed approaches were compared to those of the standard co-training [1] and manual labelling where statistical and linguistic features are employed as two different views of the MWE dataset [2]. A number of tests with different settings were performed on a Turkish MWE dataset. Ten different classifiers were utilized in the experiments and the best performing classifier pair was observed to be the SMO-SMO pair. The experimental results showed that the common-decision co-training approach is an alternative to hand-labeling of large MWE datasets and both newly proposed approaches outperform the standard co-training [2] when the training set is to be enlarged in MWE classification.
Keywords : Multiword expression, classification, training set, co training

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025