IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Turkish Journal of Electrical Engineering and Computer Science
  • Volume:27 Issue:4
  • Cloud-supported machine learning system for context-aware adaptive M-learning

Cloud-supported machine learning system for context-aware adaptive M-learning

Authors : Muhammad ADNAN, Asad HABIB, Jawad ASHRAF, Shafaq MUSSADIQ
Pages : 2798-2816
View : 22 | Download : 10
Publication Date : 0000-00-00
Article Type : Research Paper
Abstract :It is a knotty task to amicably identify the sporadically changing real-world context information of a learner during M-learning processes. Contextual information varies greatly during the learning process. Contextual information that affects the learner during a learning process includes background knowledge, learning time, learning location, and environmental situation. The computer programming skills of learners improve rapidly if they are encouraged to solve real-world programming problems. It is important to guide learners based on their contextual information in order to maximize their learning performance. In this paper, we proposed a cloud-supported machine learning system insert ignore into journalissuearticles values(CSMLS);, which assists learners in learning practical and applied computer programming based on their contextual information. Learners? contextual information is extracted from their mobile devices and is processed by an unsupervised machine learning algorithm called density-based spatial clustering of applications with noise insert ignore into journalissuearticles values(DBSCAN); with a rule-based inference engine running on a back-end cloud. CSMLS is able to provide real-time, adaptive, and active learning support to students based on their contextual information characteristics. A total of 150 students evaluated the performance and acceptance of CSMLS for a complete academic semester, i.e. 6 months. Experimental results revealed the threefold success of CSMLS: extraction of students? context information, supporting them in appropriate decision-making, and subsequently increasing their computer programming skills.
Keywords : Artificial intelligence, machine learning, DBSCAN, intelligent system, mobile learning, cloud computing, adaptive learning, computer programming

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025