IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Turkish Journal of Electrical Engineering and Computer Science
  • Volume:27 Issue:6
  • ABC-based stacking method for multilabel classification

ABC-based stacking method for multilabel classification

Authors : Weimin DING, Shengli WU
Pages : 4231-4245
View : 17 | Download : 9
Publication Date : 0000-00-00
Article Type : Research Paper
Abstract :Multilabel classification is a supervised learning problem wherein each individual instance is associated with multiple labels. Ensemble methods are effective in managing multilabel classification problems by creating a set of accurate, diverse classifiers and then combining their outputs to produce classifications. This paper presents a novel stacking-based ensemble algorithm, ABC-based stacking, for multilabel classification. The artificial bee colony algorithm, along with a single-layer artificial neural network, is used to find suitable meta-level classifier configurations. The optimization goal of the meta-level classifier is to maximize the average accuracy of classification of all the instances involved. We run an experiment on 10 benchmark datasets of varying domains and compare the proposed approach to five other ensemble algorithms to demonstrate the feasibility and effectiveness of ABC-based stacking.
Keywords : Ensemble learning, stacking, artificial bee colony, cross entropy, multilabel learning

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025