IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Turkish Journal of Electrical Engineering and Computer Science
  • Volume:28 Issue:2
  • Short unsegmented PCG classification based on ensemble classifier

Short unsegmented PCG classification based on ensemble classifier

Authors : Sınam Ajıtkumar SINGH, Swanırbhar MAJUMDER
Pages : 875-889
Doi:10.3906/elk-1905-165
View : 18 | Download : 10
Publication Date : 0000-00-00
Article Type : Research Paper
Abstract :Diseases associated with the heart are one of the main reasons of death worldwide. Hence, early examination of the heart is important. For analysis of cardiac disorders, a study of heart sounds is a crucial and beneficial approach. Still, automated classification of heart sounds is a challenging task that mainly depends on segmentation of heart sounds and derivation of features using segmented samples. In the literature available for PCG classification provided by PhysioNet/CinC Challenge 2016, most of the research has focused on enhancing the accuracy of the classification model based on complicated segmentation processes and has failed to improve the sensitivity. In this paper, we present an automated heart sound classification by eliminating the segmentation steps using multidomain features, which results in enhanced sensitivity. The study is based on homomorphic envelogram, mel frequency cepstral coefficient MFCC , power spectral density PSD , and multidomain feature extraction. The extracted features are trained using the 5-fold cross-validation method based on an ensemble boosting algorithm over 100 independent iterations. Our proposed design is evaluated using public datasets published in PhysioNet/Computers in Cardiology Challenge 2016. Accuracy of 92.47% with improved sensitivity of 94.08% and specificity of 91.95% is achieved using our model. The output performance proves that our proposed model offers superior performance results.
Keywords : Phonocardiogram, mel frequency cepstral coefficient, homomorphic filtering, ensemble classifier, feature extraction, machine learning

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025