IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Turkish Journal of Science and Technology
  • Volume:18 Issue:2
  • Deep Learning for Physical Damage Detection in Buildings: A Comparison of Transfer Learning Methods

Deep Learning for Physical Damage Detection in Buildings: A Comparison of Transfer Learning Methods

Authors : Betül BEKTAŞ EKİCİ, Saltuk Taha USTAOĞLU
Pages : 291-299
Doi:10.55525/tjst.1291814
View : 172 | Download : 245
Publication Date : 2023-09-01
Article Type : Research Paper
Abstract :The detection of physical damage in buildings is a critical task in ensuring the safety and integrity of structures. In this study, the effectiveness of deep learning methods for detecting physical damage in buildings, specifically focusing on cracks, defects, moisture, and undamaged classes was investigated. Transfer learning methods, including VGG16, GoogLeNet, and ResNet50, were used to classify a dataset of 7200 images. The dataset was split into training, validation, and testing sets, and the performance of the models was evaluated by using metrics such as accuracy, precision, recall, and F1-score. Results show that all three models achieved high accuracy on the test set, with VGG16 and ResNet50 outperforming GoogLeNet. Additionally, precision, recall, and F1-score metrics indicate strong performance across all classes, with VGG16 and ResNet50 achieving particularly high scores. It is demonstrated the effectiveness of deep learning methods for physical damage detection in buildings and provides insights into the comparative performance of transfer learning methods.
Keywords : Yapısal hasar sınıflandırması, derin öğrenme, evrişimli sinir ağları, transfer öğrenme

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025