IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Turkish Journal of Agricultural Engineering Research
  • Volume:4 Issue:2
  • Influence of Treatments on the Mechanical Properties of Epoxy Resin Hybrid Composites Reinforced wit...

Influence of Treatments on the Mechanical Properties of Epoxy Resin Hybrid Composites Reinforced with Pineapple Fiber and Snail Shell Particulates

Authors : Onyekachukwu Nicklette Akpenyiaboh, Moses Akwenuke, Donatus Emozino Edafiadhe
Pages : 278-288
Doi:10.46592/turkager.1392828
View : 32 | Download : 54
Publication Date : 2023-12-31
Article Type : Research Paper
Abstract :The growing environmental concern regarding synthetic materials in various engineering applications is driving increased research into the production of green composites. In this study, pineapple leaf fiber (PLF) and snail shell powder amended with sodium hydroxide (NaOH) solution, at concentration levels of 0, 2, 4, 6 and 8% for 30, 60 and 90 minutes, respectively, were used to produce various composite samples; and their mechanical properties tested in agreement with American Society for Testing and Materials (ASTM) International approved procedures. The laboratory test results revealed that both the NaOH concentration and treatment period considerably influenced the tensile and flexural strengths of the composite samples. It was observed that the composite samples, made with reinforcement materials modified with NaOH concentrations of 0%, 2%, 4%, 6%, and 8% for durations of 30, 60, and 90 minutes, exhibited tensile strengths of 8.12, 9.88, 11.04, 14.11, and 16.74 MPa; 10.93, 14.22, 17.04, and 15.71 MPa; and 12.27, 15.19, 14.06, and 13.84 MPa, respectively. Similarly, the results portrayed that the composite samples produced with reinforcement materials treated with 2%, 4%, 6% and 8% sodium hydroxide concentrations for durations of 30, 60 and 90 minutes, developed flexural strength of 31.98, 38.82, 43.97 and 49.03 MPa; 36.55, 44.17, 53.38 and 47.93 MPa; and 39.62, 46.08, 48.17 and 43.66 MPa, respectively. It was also interesting to observe that 6% NaOH treatment for 60 minutes yields the optimum tensile and bending strengths of 17.04 and 53.38 MPa respectively. This finding revealed the potential of using bio-composites for engineering applications, mostly where moderate tensile and flexural strengths characteristics are sought after.
Keywords : Biodegradability, Composites, Hybridization, Organic materials, Strength optimization

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025