IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • AURUM Mühendislik Sistemleri ve Mimarlık Dergisi
  • Volume:7 Issue:1
  • XGBOOST ALGORITHM FOR ORECASTING ELECTRICITY CONSUMPTION OF GERMANY

XGBOOST ALGORITHM FOR ORECASTING ELECTRICITY CONSUMPTION OF GERMANY

Authors : Abdullahı Abdu IBRAHIM, Khalıd Mohamed Abdullah ELZARIDI
Pages : 99-108
View : 32 | Download : 33
Publication Date : 2023-06-30
Article Type : Other Papers
Abstract :Stability requires energy demand prediction. We train and test 24-hour German load forecasting models. ENTSO-E Transparency Platform data covered European energy generation, transmission, and consumption. It uses German load data instead of PJM data for the eastern US, adds holidays and lag features to the XGB model, and benchmarks with a linear model and a random forest. Grid search CV refines the final XGB model. National load forecasting RMSE is 1740MW, which is suitable for the gradient boosting model. H-24 and H-48 lag is the most important for this job. Weekends and holidays help, but less. Regional holidays, average temperatures, and lag characteristics could improve the model insert ignore into journalissuearticles values(beyond H-48);.
Keywords : Consumption, Electricity, Forecasting, Regression, XGBoost

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025