- Turkish Journal of Forest Science
- Volume:5 Issue:1
- COMPARISON OF PIXEL AND OBJECT BASED CLASSIFICATION METHODS ON RAPIDEYE SATELLITE IMAGE
COMPARISON OF PIXEL AND OBJECT BASED CLASSIFICATION METHODS ON RAPIDEYE SATELLITE IMAGE
Authors : Ebru ERSOY TONYALOĞLU, Nurdan ERDOGAN, Betül ÇAVDAR, Kübra KURTŞAN, Engin NURLU
Pages : 1-11
Doi:10.32328/turkjforsci.741030
View : 17 | Download : 7
Publication Date : 2021-04-30
Article Type : Research Paper
Abstract :Çalışmanın amacı, RapidEye uydu görüntüsü üzerinde piksel ve obje-tabanlı sınıflandırma yöntemleri karşılaştırarak, alan kullanım/arazi örtüsü sınıflandırma yöntemlerinin performanslarının peyzaj ve sınıf düzeyinde değerlendirilmesidir. Çalışmada, sınıflandırma yüksek çözünürlüklü RapidEye uydu görüntüsü kullanılarak ERDAS Imagine yazılımı kullanılarak piksel-tabanlı kontrollü sınıflandırma işlemi, e-Cognition yazılımı kullanılarak ise obje-tabanlı en yakın komşuluk kontrollü sınıflandırma işlemi uygulanmıştır. Her iki yöntemde de sınıflama, 8 AKAÖ sınıfına göre yapılmıştır. Tematik AKAÖ haritalarının sınıflandırma doğruluğu, her iki yöntemde farklılık gösterirken, piksel-tabanlı sınıflandırma yönteminin genel sınıflandırma doğruluğu %58.39 ve kappa değeri 0.45, obje-tabanlı sınıflandırma yönteminin genel sınıflandırma doğruluğu 89.58% ve kappa değeri 0.86 olarak hesaplanmıştır. Doğruluk analizleri ve sonuçların karşılaştırmalı değerlendirilmesi, obje-tabanlı sınıflandırma yönteminin AKAÖ haritalarının genel doğruluğunun yanı sıra tematik AKAÖ sınıfları için de daha iyi sonuçlar verdiğini göstermiştir. Piksel-tabanlı yöntem birçok tematik sınıfın eşlenmesinde sorun teşkil etmezken, doğal/yarı doğal AKAÖ sınıfları arasında hatalar ortaya çıkmıştır. Doğruluk oranlarında, kullanıcılar tarafından belirlenen kontrol alanı yer seçimi ve kontrol nokta sayısı gibi parametreler ile ilişkilendirilebilinir. Ancak, obje-tabanlı sınıflandırma yönteminde DEM, NDVI gibi yardımcı verilerin de sınıflandırmaya dahil edilebilmesi, yüksek çözünürlüklü uydu görüntüleri ile AKAÖ sınıflandırmada doğruluk oranını arttırmaktadır.Keywords : Piksel tabanlı sınıflandırma, Obje tabanlı sınıflandırma, RapidEye, AKAÖ