IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Bilgisayar Bilimleri
  • Volume:IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium Issue:Special Öz
  • Comparing Popular CNN Models for an Imbalanced Dataset of Dermoscopic Images

Comparing Popular CNN Models for an Imbalanced Dataset of Dermoscopic Images

Authors : Erkan DUMAN, Zafer TOLAN
Pages : 192-207
Doi:10.53070/bbd.990574
View : 14 | Download : 9
Publication Date : 2021-10-20
Article Type : Research Paper
Abstract :Bu çalışmada, dengeli dağılım sergilemeyen bir veri seti karşısında popüler evrişimsel sinir ağı mimarilerinin nasıl bir performans sergileyebilecekleri çok-sınıflı bir medikal görüntü işleme uygulaması ile detaylı bir şekilde analiz edilmiştir. 7 farklı deri hastalığına ait 10.015 tane renkli lezyon resimlerinden oluşan büyük ölçekli ve dengesiz bir veri seti olan HAM10000insert ignore into journalissuearticles values(İnsan-Makineye Karşı-10000);, test aracı olarak kullanılmıştır. Bu veri seti ile eğitilip performans karşılaştırması yapılan evrişimsel sinir ağı modellerinin eğitim aşamasında ölçüm metriği olarak f1-score değerleri ve test aşamasında ise her bir modelin hem hata matrisi hem de ROC eğrileri altında kalan AUC alanları hesaplanmıştır. Evrişimsel sinir ağı modellerinin eğitim süreçleri, k-fold çapraz doğrulama ile analiz edilmiştir. Ayrıca imagenet veri setindeki filtreler, Eğitim-Transferi seçeneği ile içe aktarılmıştır. Ön-eğitimli bu modellerin uygulamaya özgü kendilerini geliştirebilmeleri için ise en derindeki evrişim katmanlarına ince-ayar işlemi uygulanmıştır. Ezber yapma problemini engellemek amacı ile modellerin çıkardıkları özellikler, tek sütunlu vektör haline getirildikten sonra 50% oranında silme işlemi ve ağırlıkların güncelleme aşamasında ise L2-düzenlemeinsert ignore into journalissuearticles values(weigh decay); işlemi uygulanmıştır. Çalışmanın asıl amacı olmamak ile birlikte evrişim mimarilerin performanslarını kısmen de olsa iyileştirebilmek için HAM10000 sınıfındaki azınlık sınıfları için veri çeşitlendirme ile oluşturulan sentetik lezyon görüntüleri, bilgi sızıntısına neden olmayacak şekilde eğitim sürecine dâhil edilmiştir.
Keywords : Popüler CNN Modelleri, Dermoskopik Görüntüler, Cilt Hastalıkları Teşhisi, Dengeli Dağılım Sergilemeyen Veri Seti

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025