IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Communications Faculty of Sciences University Ankara Series A1 Mathematics and Statistics
  • Volume:68 Issue:1
  • Robust Bayesian Regression Analysis Using Ramsay-Novick Distributed Errors with Student-t Prior

Robust Bayesian Regression Analysis Using Ramsay-Novick Distributed Errors with Student-t Prior

Authors : Mutlu KAYA, Emel ÇANKAYA, Olcay ARSLAN
Pages : 602-618
Doi:10.31801/cfsuasmas.441096
View : 16 | Download : 21
Publication Date : 2019-02-01
Article Type : Research Paper
Abstract :This paper investigates bayesian treatment of regression modelling with Ramsay - Novick insert ignore into journalissuearticles values(RN);  distribution  specifically  developed for robust  inferential procedures. It falls into the category of the so-called heavy-tailed distributions generally accepted as outlier resistant densities. RN is obtained by coverting the usual form of a non-robust density to a robust likelihood through  the  modification of its unbounded influence function. The  resulting  distributional form  is  quite  complicated  which  is  the  reason  for  its limited  applications   in  bayesian  analyses of real problems. With the help of innovative Markov Chain Monte Carlo insert ignore into journalissuearticles values(MCMC);  methods  and  softwares  currently  available,  here   we   first suggested  a  random  number  generator for  RN  distribution.  Then,  we developed  a  robust bayesian modelling with RN distributed errors and Student-t prior. The  prior  with  heavy-tailed  properties  is  here  chosen to  provide   a   built-in protection  against   the   misspecification   of   conflicting  expert  knowledge  insert ignore into journalissuearticles values(i.e. prior robustness);. This is particularly useful to avoid accusations of too much subjective bias in the prior specification.  A  simulation  study conducted for performance assessment  and   a  real-data  application  on   the   famously   known  `stack loss`  data  demonstrated   that  robust  bayesian  estimates  with  RN likelihood and  heavy-tailed  prior are robust against outliers in all directions and inaccurately specified priors.
Keywords : Robust bayesian regression, Ramsay Novick, heavy tailed distribution, Student t prior, prior robustness

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025