IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Chaos Theory and Applications
  • Volume:3 Issue:1
  • FPGA-based Dual Core TRNG Design Using Ring and Runge-Kutta-Butcher based on Chaotic Oscillator

FPGA-based Dual Core TRNG Design Using Ring and Runge-Kutta-Butcher based on Chaotic Oscillator

Authors : Murat ALÇIN, Murat TUNA, Pakize ERDOĞMUŞ, İsmail KOYUNCU
Pages : 20-28
Doi:10.51537/chaos.783548
View : 19 | Download : 8
Publication Date : 2021-06-30
Article Type : Research Paper
Abstract :Despite the fact that chaotic systems do not have very complex circuit structures, interest in chaotic systems has increased considerably in recent years due to their interesting dynamic properties. Thanks to the noise-like properties of chaotic oscillators and the ability to mask information signals, great efforts have been made in recent years to develop chaos-based TRNG structures. In this study, a new chaos-based dual entropy core TRNG with high operating frequency and high bit generation rate was realized using 3D Pehlivan-Wei Chaotic Oscillator insert ignore into journalissuearticles values(PWCO); structure designed utilizing RK-Butcher numerical algorithm on FPGA and ring oscillator structure. In the FPGA-based TRNG model of the system, 32-bit IQ-Math fixed-point number standard is used. The developed model is coded using VHDL. The designed TRNG unit was synthesized for Virtex-7 XC7VX485T-2FFG1761 chip produced by Xilinx. Then, the statistics of the parameters of FPGA chip resource usage and unit clock speed were examined. The data processing time of the TRNG unit was achieved by using the Xilinx ISE Design Tools 14.2 simulation program, with a high bit production rate of 437.043 Mbit/s. In addition, number sequences obtained from FPGA-based TRNG were subjected to the internationally valid statistical NIST 800-22 Test Suite and all the randomness tests of NIST 800-22 Test Suite were successful.
Keywords : Chaotic systems, Ring oscillator, RK Butcher, Dual core TRNG, FPGA

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025