IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Computers and Informatics
  • Volume:3 Issue:1
  • Genetic programming-based automated machine learning approach to solve regression problems

Genetic programming-based automated machine learning approach to solve regression problems

Authors : Maialen MURUA
Pages : 19-25
View : 53 | Download : 59
Publication Date : 2023-06-30
Article Type : Research Paper
Abstract :Automated machine learning aims to optimize machine learning pipelines automatically given a dataset, task type and a target variable. This research analyzes the use of genetic programming to perform automated feature engineering in regression problems. It introduces a methodology to perform feature selection and to construct new features departing from the original feature set by combining and selecting features in the leaf nodes of the genetic programming tree. A multiple feature generation technique is proposed, where three different feature sets are tested with linear regression, Random Forest regressor and Gradient Boosting regressor. The proposed approach is applied to an industrial process dataset where the target variable is an indicator of the performance of the process. The experimental results reveal the ability of the method to reduce the cardinality of the original feature set while maintaining the performance of the learning models. Moreover, they show the ability of the newly constructed feature to better discriminate the target variable.
Keywords : Automated machine learning, Feature engineering, Genetic programming, Predictive analytics

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025