IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:14
  • Makine Öğrenmesi Algoritmaları Kullanılarak İtfaiye İstasyonu İhtiyacının Sınıflandırılması...

Makine Öğrenmesi Algoritmaları Kullanılarak İtfaiye İstasyonu İhtiyacının Sınıflandırılması

Authors : Can AYDIN
Pages : 169-175
Doi:10.31590/ejosat.458613
View : 17 | Download : 21
Publication Date : 2018-12-31
Article Type : Research Paper
Abstract :Kalabalık şehirlerde kent içerisinde itfaiye istasyonlarının doğru yer seçimi, yangınlara hızlı müdahale etmek, can ve mal kaybını en aza indirmek açısından çok hayati bir konudur. İtfaiye istasyonu yer seçiminde; kent bütününü belirli bölgelere ayırarak belirlenen her bir bölge için itfaiye istasyonu ihtiyacının sorgulanması gerekmektedir. Bu çalışmada da mevcut itfaiye istasyonlarından yola çıkarak makine öğrenmesi algoritmaları kullanarak bölgelere göre itfaiye istasyonu ihtiyacının sınıflandırılması gerçekleştirilmiştir. Çalışma kapsamında her bir bölgeye ait, itfaiye araçlarının o bölgeye ulaşım süreleri, bölgenin nüfus yoğunluğu, bölgeye giden ortalama ana ve yardımcı araç sayısı verileri ile bölgedeki itfaiye istasyonu bulunma durumu verileri kullanılarak istasyon ihtiyacının tahmini için sınıflandırılma çalışması gerçekleştirilmiştir. Bu çalışmadaki amaç İzmir Büyükşehir Belediyesinin belirlediği 808 bölgeye dair itfaiye istasyonu ihtiyacı sınıflandırılmasında en başarılı sınıflandırma algoritmasının tespit edilmesidir. 2015-2017 tarihleri arasındaki yangın kayıtları analiz edilerek bölgelerin sınıflandırılmasında %93.84 ile en başarılı algoritmanın Random Forest algoritması olduğu tespit edilmiştir. En başarılı algoritma tespit edilirken doğruluk, ortalama mutlak hata (MAE), kök hata kareler ortalaması (RMSE) ve Kappa değerleri göz önüne alınmıştır.
Keywords : makine öğrenmesi, yer seçim, coğrafi bilgi sistemleri

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025