IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:17
  • Çift Yoğunluklu 1-D Dalgacık Dönüşümü Kullanılarak Parkinson Hastalığının Yaş Faktörüne Göre Tespit ...

Çift Yoğunluklu 1-D Dalgacık Dönüşümü Kullanılarak Parkinson Hastalığının Yaş Faktörüne Göre Tespit Edilmesi

Authors : Cüneyt YÜCELBAŞ, Şule YÜCELBAŞ
Pages : 881-887
Doi:10.31590/ejosat.649480
View : 25 | Download : 14
Publication Date : 2019-12-31
Article Type : Research Paper
Abstract :Parkinson, hareketi etkileyen nörolojik bir sinir sistemi rahatsızlığıdır. Parkinson gibi sinir hücreleriyle yakından ilgisi olan bir hastalığın yürüme verileriyle tespit edilebilmesi muhtemeldir. Günümüzde birçok hastalığa ait belirtiler çok erken yaşlarda ortaya çıkmaya başlamıştır. Bu nedenle bütün hastalıklar için yaş faktörüne göre gerçekleştirilen analiz çalışmaları önem kazanmıştır. Bu sebeple bu çalışmada Çift Yoğunluklu 1-D Dalgacık Dönüşümü (ÇY1DDD) kullanılarak deneklerden elde edilen verilerin yaş faktörüne göre analiz edilmesi ve Parkinson hastalığının (PH) yüksek doğrulukla tespit edilmesi amaçlanmıştır. Kullanılan veri seti genç, yetişkin ve yetişkin hasta olmak üzere 15 denekten alınan yürüyüş verilerinden oluşmaktadır. Kaydedilen veriler üzerinde öncelikle ÇY1DDD yöntemi üç seviye olarak uygulanmış ve yaklaşım (YK) ile detay katsayıları (DK) elde edilmiştir. Daha sonra yaş faktörüne göre elde edilen son seviye YK verilerinden 10 adet özellik çıkarılmıştır. Çıkarılan bu özellikler sağlıklı genç-yetişkin hasta ve sağlıklı yetişkin-yetişkin hasta olmak üzere ikili sınıflar şeklinde 4 farklı karar mekanizmasına verilmiştir. Elde edilen sonuçlar birçok istatistiksel metrikle yorumlanmıştır. Uzman sistemler sayesinde anlamlı sonuçlara ulaşılmış ve genç-sağlıklı verilerinin yetişkin-hasta verilerinden daha düşük hata değerleri ve %100 sınıflama doğruluğu (SD) oranı ile ayrılabildiği görülmüştür. Karar mekanizmaları arasında ise sıfıra en yakın hata değerleriyle yapay sinir ağları (YSA), her iki sınıf için de başarısını kanıtlamıştır. Literatürde her ne kadar bu alanda yapılan çalışmalar bulunsa bile, yaş faktörünün PH üzerindeki etkisinin ayrıntılı analizine yeterli derecede yer verilmemesi bu çalışmanın önemini arttırmıştır. Bunun yanında kullanılan etkin özelliklerden bazılarının PH’nin uzman sistemler tarafından otomatik tespit edildiği çalışma alanında daha önce kullanılmamış olması, çalışmanın literatüre katkısını önemli ölçüde desteklemektedir. 
Keywords : Parkinson, yürüyüş sinyali analizi, Çift Yoğunluklu 1 D Dalgacık Dönüşümü, yaş faktörü

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025