IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Ejosat Special Issue:(ARACONF) Special Issue
  • Bilimsel Makalelerin Atıf Sayısı Tahmini

Bilimsel Makalelerin Atıf Sayısı Tahmini

Authors : Hakan Ezgi KIZILÖZ
Pages : 370-375
Doi:10.31590/ejosat.araconf48
View : 22 | Download : 12
Publication Date : 2020-04-01
Article Type : Research Paper
Abstract :Bilimsel makalelerin etkisini ölçmek kolay ya da tekdüze bir süreç değildir. Makalelerin atıf sayıları, etkilerinin ölçümünde önemli bir rol oynamaktadır. Öte yandan, bir makalenin atıf sayısı, makale yayınlandığı anda elde edilebilen bir veri değildir. Atıf sayısının elde edilebilmesi için makalenin yayınlanması ve toplulukta fark edilerek atıf(lar) alması, yani uzun sayılabilecek bir süre geçmesi gerekmektedir. Bu çalışmada, atıf sayısının erişilebilir olmaması problemini basitleştirdik ve bir makalenin yayınlanmasından sonraki bir yıl içerisinde en az bir atıf alıp almayacağını tahmin eden bir derin öğrenme modeli oluşturduk. Modelimizde kelime dizileri arasındaki ilişkiyi bulabilmek adına Uzun Kısa Süreli Bellek (UKSB) kullanılmaktadır. Bunun yanı sıra, bu çalışmada modelimizin makale tam metni yerine sadece özetini kullandığımızda bu durumun performans üzerindeki etkisini de analiz ediyoruz. Deneylerimizde herkese açık veri kümelerini kullanılmıştır. Makalelerin tam metni Kaggle’da bulunan bir veri kümesinde mevcuttur. Özet, üstveri öznitelikleri ve ilk yıl atıf sayıları ise Microsoft Academic Graph’tan çıkarılmıştır. Elde edilen sonuçlar, tam metin kullanımının daha yüksek doğrulukla sonuçlandığını göstermektedir. Fakat tam metin kullanıldığında modelin eğitim süresi, özet kullanıldığındaki eğitim süresine göre çok yüksek çıkmaktadır. Ayrıca, tam metinlere kıyasla makale özetleri daha kolay erişilebilir durumdadır. Son olarak, eğittiğimiz model bu makalenin ilk yayın yılında en az bir atıf alacağını öngörmektedir.
Keywords : Derin Öğrenme, Uzun Kısa Süreli Bellek, Metin Madenciliği, Denetimli Öğrenme, Atıf Tahmini

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025