IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Ejosat Special Issue:(HORA) Special Issue
  • Analyzing Classifier Performances Based on Implemented Expectation-Maximization Algorithm to Gaussia...

Analyzing Classifier Performances Based on Implemented Expectation-Maximization Algorithm to Gaussian Mixture Model

Authors : Korhan CENGİZ
Pages : 26-37
Doi:10.31590/ejosat.778804
View : 22 | Download : 13
Publication Date : 2020-08-15
Article Type : Research Paper
Abstract :Maksimum olabilirlik, karışım modeli, bayes sonucu ve maksimum entropi gibi parametric yoğunluk kestirimleri dağılımın çeşidi bilindiğinde veya tahmin edilebilir olduğunda sıklıkla kullanılmaktadır. Beklenti maksimizasyonu veya değişken adım öğrenme algoritması dağılım parametrelerinin maksimum olabilirliğini elde etmenin en başarılı yollarıdır. Bu makalede, üç farklı dağılım içeren çok boyutlu Gauss karışım modeline EM algoritmasının uygulanması amaçlanmıştır. Bu çalışmada istatistiksel dağılım, Gauss dağılımından elde edilmiştir ve her dağılım için ortalama ve kovaryans matrisi olan parametreler tahmin süreci için kullanılmıştır. Orijinal özellik vektörleri ve onların tahminleri benzerlik açısından karşılaştırılmış aynı zamanda elde edilen sonuçlar sunulmuş ve detaylı bir şekilde tartışılmıştır. Ek olarak, çatallı veri kümesi için her bir dağılım belirtilmiştir. Son olarak, Bayes, k-NN ve diskriminant sınıflandırma metotları GMM’ ye uygulanmış ve bu metotların performansları analiz edilmiştir.
Keywords : Bayes Sınflandırması, Yoğunluk Tahmini, EM Algoritması, GMM, k NN, LDA

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025