IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Ejosat Special Issue:(ICCEES) Special Issue
  • Etkin EEG Özellikleri Çıkarılarak Arousal Tespiti

Etkin EEG Özellikleri Çıkarılarak Arousal Tespiti

Authors : Gizemnur EROL, Fatma Zehra GÖĞÜŞ, Gülay TEZEL
Pages : 117-122
Doi:10.31590/ejosat.802946
View : 25 | Download : 15
Publication Date : 2020-10-05
Article Type : Research Paper
Abstract :Son zamanlarda toplumun en önemli problemlerinden biri olan uyku bozuklukları, bireylerin sağlığını ve yaşam kalitesini ciddi şekilde etkilemektedir. Uykusuzluk (Insomnia), narkolepsi, uyku apnesi ve huzursuz bacak sendromu gibi birçok uyku bozukluklarının neden olduğu rahatsızlıklar vardır. Uyku bozukluklarına sebep olan ana faktör ise bireyin uyku anındaki uyanma ile sonuçlanamayan, uyku kalitesini düşüren uyku kesintileridir. Arousal diğer bir adı ile uyanayazma geçici olan bu kesintilerdir ve bir beyin dalga (Elektroansefalogram -EEG) aktivitesinin paternindeki ani değişikliği temsil etmektedir. Arousal tespiti genellikle EEG verileri kullanılarak Amerikan Uyku Tıbbı Akademisi (American Academy of Sleep Medicine-AASM) tarafından belirlenen kriterlere göre yapılmaktadır. Bu çalışmada amaç, AASM tarafından belirlenen kriterler doğrultusunda EEG sinyalleri vasıtasıyla hasta bireylerdeki arousalların tespitidir. Bu amaç doğrultusunda, öncelikle, çalışmaya dahil edilen 5 hasta bireyin tek kanallı (C3/A2) EEG sinyallerine sırasıyla filtreleme, normalizasyon ve segmantasyon önişlemleri uygulanmıştır. Daha sonra Spektral Güç Yoğunluğu (Power Spectral Density-PSD) ve Ayrık Dalgacık Dönüşümü (Discrete Wavelet Transform-DWT) yöntemleri ile gerçekleştirilen özellik çıkarma süreci sayesinde, EEG sinyal segmentlerine ait 2 özellik seti ve bu özellik setlerinin birleştirilmesiyle 3. özellik seti oluşturulmuştur. Ardından oluşturulan 3 özellik seti üzerine Sarmal Alt Küme Değerlendirme (Wrapper Subset Evaluation-WSE) özellik seçme yöntemi uygulanarak etkin özellikler belirlenmiştir. Nihai olarak belirlenen özelliklerin Yapay Sinir Ağları (YSA) ve Rasgele Orman (RO) algoritmaları tarafından sınıflandırılmaları ile arousal içeren EEG segmentleri tespit edilmiştir. Gerçekleştirilen bu çalışmaların beraberinde EEG sinyal kayıtlarından başka hiçbir PSG sinyal kaydına ihtiyaç duymadan, yalnızca tek kanallı EEG sinyalleri ile oldukça başarılı sonuçlar elde edildiği tespit edilmiştir. Çalışma sonucunda ise Özellik Seti 3’ün etkin özellikleri ve YSA ile en yüksek doğruluk oranı %99.05 olarak elde edilmiştir.
Keywords : Arousal, EEG, Spektral Güç Yoğunluğu, Ayrık Dalgacık Dönüşümü, Sarmal Alt Küme Değerlendirme, Yapay Sinir Ağları, Rasgele Orman Algoritması

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025