IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:22 Special Issue
  • COVID-19 Vakalarının Makine Öğrenmesi Algoritmaları ile Tahmini: Amerika Birleşik Devletleri Örneği...

COVID-19 Vakalarının Makine Öğrenmesi Algoritmaları ile Tahmini: Amerika Birleşik Devletleri Örneği

Authors : Nur Selin ÖZEN, Selin SARAÇ, Melik KOYUNCU
Pages : 134-139
Doi:10.31590/ejosat.855113
View : 27 | Download : 14
Publication Date : 2021-01-31
Article Type : Research Paper
Abstract :Koronavirüs, 2019 yılının Aralık ayında ilk olarak Çin’in Wuhan kentinde ortaya çıkmış ve 11 Mart 2020’de Dünya Sağlık Örgütü tarafından pandemi olarak ilan edilmiştir. Vaka sayılarını kontrol altına almak için pek çok ülke karantina, sokağa çıkma yasağı ve sosyal alanların bir süreliğine kapatılması gibi çeşitli önlemler almıştır. Doğrulanmış vaka tahminlemesi pandemide olası planlamalar için büyük önem taşımaktadır. Gelecek verilerinin gerçeğe en yakın bir şekilde tahminlenmesi; pandemi döneminde lojistik, tedarik, hastane personel ve malzeme planlaması için kullanılabileceği gibi aşılama senaryolarında da girdi olarak kullanılabilir. Literatürde doğrulanmış vaka tahmininde makine öğrenmesi, bölmeli model, zaman serisi analizi gibi pek çok yöntem kullanarak tahminleme yapılan çalışmalar vardır. Bu çalışmada, Amerika Birleşik Devletleri’ndeki doğrulanmış vaka sayılarını kullanarak gelecek günlerdeki vaka tahminlerini çeşitli makine öğrenmesi modelleri yapılmıştır. Python ve R programlama dili kullanılarak yapılan tahminlemeler Prophet, Polinom Regresyon, ARIMA, Doğrusal Regresyon ve Random Forest modelleri ile yapılmıştır. Test verisiyle tahmin edilen verilerin performansları ortalama mutlak yüzde hatası (MAPE), ortalama karekök sapması (RMSE) ve ortalama mutlak hata (MAE) kullanılarak değerlendirilmiştir. Sonuç olarak, MAPE hata metriği baz alınarak en iyi tahminleri veren algoritma Polinom Regresyon olarak bulunmuştur.
Keywords : COVID 19, Tahminleme, Makine Öğrenmesi

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025