IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:25
  • Network Intrusion Detection using Optimized Machine Learning Algorithms

Network Intrusion Detection using Optimized Machine Learning Algorithms

Authors : Nurdan AKHAN BAYKAN, Tahira KHORRAM
Pages : 463-474
Doi:10.31590/ejosat.849723
View : 28 | Download : 13
Publication Date : 2021-08-31
Article Type : Research Paper
Abstract :Internet ağı saldırı tespit mekanizması, mevcutta hızlı büyüyen ağ sistemlerinde birincil gereksinimdir. Veri madenciliği ve makine öğrenimi yaklaşımları, son birkaç yıldır ağ anomali tespiti için yaygın olarak kullanılmaktadır. Makine öğrenimi tabanlı saldırı tespit sistemleri son zamanlarda daha popüler hale gelmektedir. Saldırı Tespit Sistemi (STS) için en yaygın olarak kullanılan makine öğrenimi algoritmaları K-En Yakın Komşu (KNN), Destek Vektör Makinesi (DVM) ve Rastgele Orman (RO) algoritmalarıdır. Ancak bu yöntemlerin performansı, uygun parametre değerlerinin seçimine bağlıdır. Bu araştırma, etkili makine öğrenme algoritmalarına dayalı bir STS modeli oluşturma amacına odaklanmaktadır. Bu araştırmada kullanılan makine öğrenme algoritmaları KNN, DVM ve RO’dır. Bu algoritmaların sınıflandırma doğruluğunu iyileştirmek için algoritmaların bazı parametreleri Parçacık Sürü Optimizasyonu (PSO) ve Yapay Arı Kolonisi (YAK) optimizasyon teknikleri kullanılarak optimize edilmiştir. Çalışmanın sonucu, parametreleri optimize edilmiş KNN, DVM ve RO’nın, orijinal parametre değerleri ile kullanımlarından daha iyi performans gösterdiğini göstermektedir. Ayrıca, deney sonuçları, hem bilinen ağ saldırılarının hem de bilinmeyen ağ saldırılarının tespiti ile ilgili olarak ağ anomali tespitinde KNN’nin en uygun algoritma olduğunu göstermektedir. Bu araştırma kapsamında çalışmalarda NSL-KDD standart veri seti kullanılmıştır. Çalışmada önerilen modelin, son teknoloji modellerde sağlanandan daha iyi performans gösterdiği kanıtlanmıştır.
Keywords : Anomali Tespiti, Akıllı Saldırı Tespit Sistemi, Sürü Zekâsı, Makine Öğrenimi Algoritmaları

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025