IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:25
  • Akıllı Telefonda Derin Öğrenme ile Deprem Erken Uyarı Sistemi Tasarımı

Akıllı Telefonda Derin Öğrenme ile Deprem Erken Uyarı Sistemi Tasarımı

Authors : Gonca OKAY AHİ, Baran CANPOLAT
Pages : 23-27
Doi:10.31590/ejosat.891896
View : 17 | Download : 15
Publication Date : 2021-08-31
Article Type : Research Paper
Abstract :Ülkemiz gibi deprem kuşağında olan bir coğrafya için deprem araştırmaları ve olası erken uyarı sistemlerine dair olan yeni yaklaşımlar son zamanlarda meydana gelen depremleri de göz önünde bulunduracak olursak (ör. İzmir, 2020) artan bir önem ve ihtiyaç teşkil etmektedir. Özellikle uyku halinde iken yakalanılan depremler bilindiği üzere çok daha vahim sonuçlar doğurmaktadır. Bu çalışmada, mevcut çalışmalardan farklı olarak, ilk tasarımını yaptığımız deprem erken uyarı sistemi yaklaşımı uyku halinde iken, olası bir depremi, içinde bulunan sensörler aracılığı ile ivmeölçer’e dönüştürülen akıllı telefonlar sayesinde, ReQuakenition ismini verdiğimiz bir telefon uygulaması arayüzü ile acil durumlarda haber vermeyi amaçlamaktadır. Afet ve Acil Durum Yönetimi Başkanlığı (AFAD) web sayfasından indirilen gerçek deprem verilerinden yararlanarak Uzun kısa süreli belleğe sahip (Long-Short Term Memory: LSTM) tekrarlayan sinir ağı mimarisi (Recurrent Neural Network: RNN) derin öğrenme algoritmaları ile eğitilen verilerden elde edilen sonuçlarda %82’nin üzerinde duyarlılık gözlemlenmiştir. Elde edilen bu ilk sonuçlar, son derece yaygın olarak kullanılan akıllı telefonların, deprem erken uyarı sistemlerinde kullanılmak üzere, jeodezik ve sismik ağların yanı sıra çok daha yoğun ve homojen bir ivmeölçer ağı gibi çalışabilmesi adına ümit vericidir.
Keywords : akıllı telefon, ivmeölçer, derin öğrenme, sensör, deprem, RNN, LSTM

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025